Binary Phase Mode

Short Tutorial & Applications

ForthDD 2019
• Diffraction
• Binary Phase Theory
• Binary Diffraction from Ferroelectric Liquid Crystal on Silicon -FLCoS-
• Measurements, Results, Demo Unit
• QXGA – SLM and interface options
• Application References
• Diffraction is an interference effect due to changes in the wavefront

• Far field diffraction – when the distance from the obstacle, a, to screen is $> a^2/\lambda$

• We will only be considering far field diffraction
• Diffraction grating with coherent illumination

- Constructive interference at angles such that:
 \[\sin(\theta_m) = \frac{m\lambda}{a} \]

- Destructive interference at angles such that:
 \[\sin(\theta_m) = \frac{(m + 0.5)\lambda}{a} \]
• You don’t just have to block the wavefront to create diffraction

• Diffraction can be created by introducing phase difference between parts of the wavefront

 - Phase difference now created by Δn and path length (which makes things more complex!)

 - If $\Delta n \cdot d = (c+1)\lambda/2$, destructive interference occurs at $\theta = 0$ ($c =$ integer) i.e. no zero order

 - It is possible to create grating with multiple phase levels (e.g. several d’s or n’s)

 - Forth Dimension Displays’ SLM can only create 2 levels (binary), so that is what will be considered
Why binary: FLCoS Structure

Top view of microdisplay

Cross-section of pixel

Incident Light (Illumination)

Reflected Light (Image)

Cover Glass

Front Electrode

Pixel Mirror

FLC

Silicon
Why binary: FLC Switching

- Rod-like molecules (~3 nm)
- Layered structure: layer normal \mathbf{z}
- Molecular long axis \mathbf{n}
- Just two tilt positions with tilt angle $\pm \Theta$

- FLC Polarisation couples with E-field
- FLC layer thickness <1 µm
- Optimised for 555 nm
- Binary in-plane switching
- Dynamic switching angle (DSA) = 2Θ
- Switching time ~40 µs @ 2.5V/µm
• For diffraction gratings, the *diffraction efficiency*, η_m, of each diffracted order (m) is the ratio of the power in the order to that of the incident beam.

• For a binary phase grating the diffraction efficiencies are calculated as:

Zero order (n=0) \[\eta_0 = \left(\frac{b}{a} \right)^2 4\cos^2(p\pi) \]

\pm-m order \[\eta_m = \frac{4\sin^2\left(\frac{b}{a} \frac{m\pi}{m\pi} \right)}{(m\pi)^2} \sin^2(p\pi) \]
- So, for a binary phase grating with π ($p = 0.5$) phase difference, the theoretical diffraction efficiencies are:

<table>
<thead>
<tr>
<th>Order</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>± 1</td>
<td>40.5</td>
</tr>
<tr>
<td>± 2</td>
<td>0</td>
</tr>
<tr>
<td>± 3</td>
<td>4.5</td>
</tr>
<tr>
<td>± 4</td>
<td>0</td>
</tr>
<tr>
<td>± 5</td>
<td>1.6</td>
</tr>
<tr>
<td>± 6</td>
<td>0</td>
</tr>
</tbody>
</table>
Binary Phase Gratings (3)

• The efficiency is related to the phase difference by a \sin^2 term:

$$\eta_m = \frac{4 \sin^2 \left(\frac{b - m \pi}{a} \right)}{(m \pi)^2} \sin^2(p \pi)$$

• For ForthDD’s SLM, (a nominal half wave plate i.e. π phase difference), the efficiency will be wavelength dependent and also dependent on the cell gap thickness:

$$Display\ phase\ difference = \frac{2\pi \cdot d \cdot \Delta n\lambda}{\lambda}$$
Where $d = 2 \times Cell\ Gap$
Binary Phase Gratings (4)

• No need for an output polarizer or alignment.

Diffraction Efficiency is proportional to $0.5 \cdot (1 - \cos(2\text{DSA})) = \sin^2(\text{DSA})$

• So, max efficiency for DSA = 90°
• In case of ForthDD’s FLC the DSA = 33°, so $\sin^2(33) = 30\%$
• So (assuming true HWP performance), $\eta_{\pm1} = 30\% \cdot 40.5\% = 12.2\%$
• The polarization state of the constructively interfering light is the same as the input polarization state (phase only) if aligned to bisected angle of DSA (i.e. 33°/2) +45°.
Binary Phase Gratings (5)

- Relative efficiency versus DSA from 0° to 90°

100% equals 40.5% efficiency into each +1st and -1st order

DSA of ForthDD’s FLC
543.5nm HeNe
Unexpanded beam diam. = 124 pixel

Power meter

Glan-Thomson polarizer

Output polarizer (absorption)

SLM @ 40°C
Angle of incidence on display = 9.1°
• What are the fixed patterns and where do they come from?

QXGA SLM fixed patterns
(distortion due to angled view)

- Zero order
- Inter Pixel Gap
Demo unit
Demo unit

QXGA Microdisplay

Polarizer

Mirror

Diffuser

Beam Expander

Laser Diode 532nm
Note the mirror point of +1st & -1st diffractive order at the zero order.

Zero order and hexagonal diffraction pattern due to interpixel gaps are visible.

Speckle contrast reduction option by coherent temporal summation (averaging) proportional to \sqrt{N} phase masks showing the same far field image.

Inherent phase stability.

Transmission function calculated using LightTrans „VirtualLab Fusion“

$\text{www.lighttrans.com}$
Other optical functionalities

Transmission function can be programmed to show

- Grey-scale images (example: 8 bit)
- Offset of 1st order
- Wavefront correction up to $1/\pi$ (33%)
- 2 Vortex beams of opposite helicity:

Schematic representation of transmission function (Ronchi linear diffraction grating with a „fork“ dislocation and resultant vortex beams, image to the left)

Transmission function calculated using LightTrans „VirtualLab Fusion“
www.lighttrans.com
Other optical functionalities

- Beam Shaping & Polarisation Control
Properties of QXGA SLM

<table>
<thead>
<tr>
<th>SLM Property</th>
<th>QXGA data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>2048 x 1536</td>
</tr>
<tr>
<td>Pixel number</td>
<td>3.1 M Pixel</td>
</tr>
<tr>
<td>Fill Factor</td>
<td>94 %</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>8.2 µm</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>430 – 800 nm*</td>
</tr>
<tr>
<td>Active Area</td>
<td>16.8 x 12.6 mm</td>
</tr>
<tr>
<td>+/-1st diffracted order efficiency @ 20°C</td>
<td>10% @ 544 nm</td>
</tr>
<tr>
<td></td>
<td>8.2% @ 488 nm</td>
</tr>
<tr>
<td>Tested Power (cw)</td>
<td>1.3W @ 550 nm</td>
</tr>
<tr>
<td></td>
<td>3.5W @ 1064 nm</td>
</tr>
</tbody>
</table>

Option: Extended Storage Temperature

-40°C - +80°C

* Near-IR possible at reduced efficiency
<table>
<thead>
<tr>
<th>SLM Model</th>
<th>QXGA-3DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit Refresh Rate</td>
<td>40 Hz - > 4.5 kHz</td>
</tr>
<tr>
<td>On-board Storage</td>
<td>1024 bit planes</td>
</tr>
<tr>
<td>Trigger ports</td>
<td>RS232, RS485 + 3 user-defined</td>
</tr>
</tbody>
</table>
Video Interface: QXGA-R10-AUX

<table>
<thead>
<tr>
<th>SLM Model</th>
<th>QXGA-R10-AUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh Rate via DisplayPort</td>
<td>Max 100 Hz, 24 bit @ 2048 x 1536 resolution</td>
</tr>
<tr>
<td></td>
<td>Max 240 Hz, 24 bit in SXGA 1280 x 1024 window</td>
</tr>
<tr>
<td></td>
<td>Max 400 Hz, 18 bit in XGA 1024 x 768 window</td>
</tr>
<tr>
<td>Sync ports</td>
<td>1 IN, 6 OUT</td>
</tr>
<tr>
<td>Thermal Management</td>
<td>included</td>
</tr>
</tbody>
</table>
2k x 2k SLM

New Product
• 2k-R10 (video interface) in Q1 2020
• 2k-3DM (memory based interface, pictured right) in Q3 2020
• Pixel pitch 8.2 \(\mu \text{m} \)
• Optical performance identical to QXGA
• Interface performance tbd.
Super Resolution Microscopy: Structured Illumination for LLS, TIRF, SPIM, SMLM, Scanning

- “A guide to structured illumination TIRF microscopy at high speed with multiple colors“, Young *et al*.* JoVe* https://doi.org/10.3791/53988 (2016), In depth guide for the assembly and operation of a structured illumination TIRF microscope.
- „Super-resolution using speckle illumination microscopy“, A. Negash *et al*., *Imaging and Applied Optics 2017* (OSA Technical Digest) paper MTh1C.2 , https://doi.org/10.1364/MATH.2017.MTh1C.2
Super Resolution Microscopy: Structured Illumination for LLS, TIRF, SPIM, SMLM, Scanning

- „Compressive sensing for fast 3-D and random-access two-photon microscopy“, C. Wen et al., Opt. Lett. 44 (17), 4343-4346 (2019) https://doi.org/10.1364/OL.44.004343
- „Spatially resolved random-access pump-probe microscopy based on binary holography“, C. Wen et al., Opt. Lett. 44 (16) 4083-4086 (2019) https://doi.org/10.1364/OL.44.004083
Applications

Optogenetics

Holographic Optical Tweezers / Vortex Beam / Real Time
- „Dynamical hologram generation for high speed optical trapping of smart droplet microtools“, P. M. P. Lanigan et al., *BIOMEDICAL OPTICS EXPRESS* 3 (7), 1609 (2012)

Beam Shaping & Polarisation Control

Spatial Filtering
Surface quality by Interference

2D Binary Holograms

3D Binary Computer Generated Holograms

Holographic Projection

Free space optical communication

Optical Computing